2 3 M ay 2 00 7 A nonlinearly ill - posed problem of reconstructing the temperature from interior data ∗

نویسنده

  • Alain Pham Ngoc Dinh
چکیده

We consider the problem of reconstructing, from the interior data u(x, 1), a function u satisfying a nonlinear elliptic equation ∆u = f(x, y, u(x, y)), x ∈ R, y > 0. The problem is ill-posed. Using the method of Green function, the method of Fourier transforms and the method of truncated high frequencies, we shall regularize the problem. Error estimate is given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A P ] 8 M ay 2 00 6 LOW - REGULARITY SCHRÖDINGER MAPS , II : GLOBAL WELL - POSEDNESS IN DIMENSIONS d ≥ 3

In dimensions d ≥ 3, we prove that the Schrödinger map initialvalue problem { ∂ts = s×∆xs on R × R; s(0) = s0 is globally well-posed for small data s0 in the critical Besov spaces Ḃ d/2 Q (R ; S), Q ∈ S.

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

ar X iv : m at h / 05 05 46 8 v 1 [ m at h . A P ] 2 3 M ay 2 00 5 INSTABILITY FOR SEMI - CLASSICAL SCHRÖDINGER EQUATIONS

Using WKB methods for very small times, we prove some instability phenomena for semi-classical (linear or) nonlinear Schrödinger equations. Like in several recent papers concerned with instability or ill-posedness issues, the main step of the analysis consists in reducing the problem to an ordinary differential equation. The solution to this o.d.e. is explicit, and the instability mechanism is ...

متن کامل

Interior point methods for ill-posed problems: A primal-dual solver for the box-constrained inverse conductivity problem

This paper explores the utility of interior point methods in solving box-constrained nonlinear ill-posed problems. In this context we investigate the implementation of a primal-dual Newton algorithm based on the logarithmic barrier function to solve the inverse electrical conductivity problem when the upper and lower bounds on the parameters of interest are known a priori. The proposed techniqu...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008